Année universitaire : 2024 2^{ème} année Licence Chimie

	Examen de 2 ème sem	estre de chimie quantique
Nom :	Prénom :	Groupe :Note :
	un opérateur) sont équations aux valeurs	est un nombre réel ; ψ et φ sont des fonctions ; Â est propres Vrai ou faux Justifiez votre réponse
2-		onques. Déterminer le commutateur correspondant B
	déduire le commutateur $[T_x*X,P_x]$ Sacha $[P_x] = i\hbar$ et T_x commute avec P_x	ant que l'on a :
	ice 02: fonction d'onde d'une particule libre dan	
	$\psi_n(x) = A \sin\left(\frac{n\pi x}{a}\right)$	n est un nombre naturel non nul
1-	Déterminer la constante A pour que ψ _n (x	x) soient normées.
•••		

2- Montrer que $\psi_n(x)$ sont des fonctions propres de l'Hamiltonien de la particule.
3- Que représentent les valeurs propres?
A. Considérant maintenant que condein la muite mand 2 fais se la novem initiale (0 x x x 2) de man
4 - Considérant maintenant que soudain le puits prend 2 fois sa longueur initiale $(0 \le x \le 2a)$, donner
la fonction d'onde et l'énergie correspondantes

On donne : $\cos(2\theta) = 1 - 2\sin^2(\theta)$, $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$, $\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}$

Exercice 03:

Le travail d'extraction d'un électron du zinc est $W_S=3.3\ eV.$

Données : $h = 6.62 \ 10^{-34} \ J.s$. $c = 3 \ 10^8 \ ms^{-1}$ $m_e = 9.11 \ 10^{-31} \ kg$

1	•	Calculer la fréquence seuil et la longueur d'onde seuil du zinc.
2	•	On éclaire le zinc par une radiation UV de longueur d'onde λ = 0,25 μ m. Calculer l'énergie cinétique maximale de sortie des électrons et leur vitesse.
• • • • •	••	
• • • • •	••	
• • • • •	• •	
• • • • •	• •	
• • • • •	• •	
	• • •	
3	•	On éclaire le zinc par la lumière d'un arc électrique en interposant une plaque de verre qui absorbe les ondes de longueur d'onde inférieure à $0,42~\mu m$. Un effet photoélectrique est-il observé ?